Lateral Information Processing by Spiking Neurons: A Theoretical Model of the Neural Correlate of Consciousness

نویسندگان

  • Marc Ebner
  • Stuart R. Hameroff
چکیده

Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on "autopilot"). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the "conscious pilot") suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious "auto-pilot" cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways "gap junctions" in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns

Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...

متن کامل

Fast Temporal Encoding and Decoding with Spiking Neurons

We propose a simple theoretical structure of interacting integrate-and-fire neurons that can handle fast information processing and may account for the fact that only a few neuronal spikes suffice to transmit information in the brain. Using integrate-and-fire neurons that are subjected to individual noise and to a common external input, we calculate their first passage time (FPT), or interspike...

متن کامل

Hammerstein-Wiener Model: A New Approach to the Estimation of Formal Neural Information

 A new approach is introduced to estimate the formal information of neurons. Formal Information, mainly discusses about the aspects of the response that is related to the stimulus. Estimation is based on introducing a mathematical nonlinear model with Hammerstein-Wiener system estimator. This method of system identification consists of three blocks to completely describe the nonlinearity of inp...

متن کامل

A Computational Model for Conscious Visual Perception and Figure/Ground Separation

The human brain is able to perform a number feats that researchers have not been able to replicate in artificial systems. Unsolved questions include: Why are we conscious and how do we process visual information from the input stimulus right down to the individual action. We have created a computational model of visual information processing. A network of spiking neurons, a single layer, is sim...

متن کامل

Biological and Functional Models of Learning in Networks of Spiking Neurons

Neural circuits generally process information in a massively parallel way and exhibit a communication between the constituent units based on spikes, i.e. binary events, therefore differing fundamentally from many artificial information processing and learning systems. In such neural circuits, synaptic plasticity is widely considered to be the main biophysical correlate of learning. This thesis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011